捷创力高仪器有限公司
业务电话:0731-85260926
技术支持:0731-85260926
公司传真:0731-85263946
网络支持:QQ-2582961985
E-mail: yujin.wu@miko.com.cn
公司地址:湖南省长沙市雨花区韶山南路亚商国际大厦A座2524室
 
新闻中心 你当前的位置:首页 - 新闻中心
关于体声滤波器SAW/BAW的片上测试与性能表征结果测试详细剖析
发布日期:2020-2-2   点击次数:773


引言

探针台参考:日本APOLLOWAVE 产品大量用于村田、TDK、太阳诱电的SAW 工艺生产线及研发部门中。http://jectronic.com/pinpai.asp?pinpai=30

VNA 矢量网络分析仪请参考:http://jectronic.com/jjfapro.asp?smallclass=274&id=169

射频(RF)滤波器已成为电子系统小型化、集成化及芯片化的瓶颈之一。薄膜体声波谐振器(FBAR)是目前在500MHz~20GHz频段实现高性能滤波器芯片化的重要途径。FBAR是一种基于体声波(BAW)的新型电声谐振器,通过压电薄膜的逆压电效应将电能转换成声波并形成谐振。基于测试与性能表征的方法。另外,也未见文献报道低阻硅衬底对BAW 滤波器性能的影响。

为了表征本课题组研制的L波段BAW 滤波器第一轮工艺样品的性能,使用射频探针台和矢量网络分析仪(VNA)测得其S 参数。为了从测得的S参数便捷地计算出BAW 滤波器的各项性能参数,在ADS软件环境下建立了BAW 滤波器性能参数的解算流程。此外,还根据测试和表征结果,讨论了低阻硅衬底和器件工艺误差对BAW 滤波器性能的影响。

1 BAW 滤波器的工作原理及结构

BAW 滤波器多采用梯形拓扑结构,由一组串联FBAR 和一组并联FBAR 构成。所有串联的FBAR有相同的谐振频率,所有并联的FBAR有另一个相同的谐振频率,后者比前者略低。图1为梯形拓扑结构BAW 滤波器的频率特性。为了获得中心频率为f0、通带带宽为Δf 的窄带带通滤波器,串联FBAR的串联谐振频率和并联谐振频率分别为f0和f0+Δf/2,并联FBAR的串联谐振频率和并联谐振频率分别为f0-Δf/2和f0。串联FBAR的并联谐振频率构成了BAW 带通滤波器的上阻带衰减点,并联FBAR的串联谐振频率构成了BAW带通滤波器的下阻带衰减点。当输入信号频率为f0时,谐振频率为f0的串联FBAR处于谐振状态,呈低阻状态;此时,并联FBAR偏离谐振状态,呈高阻状态;因此电路对频率为f0的输入信号无大的衰减。当输入信号频率为f0-Δf/2时,由于此时并联FBAR呈低阻状态、串联FBAR呈高阻状态,信号传输过程将经历多次衰减。同理,当输入信号频率为f0+Δf/2时,信号传输过程也将经历多次衰减。这样便实现了输入信号的滤波[4]。

关于体声滤波器的片上测试与性能表征结果测试详细剖析

图1 BAW 滤波器的基本结构与其带通特性

本文的待测器件(DUT)为BAW 窄带带通滤波器,其构成单元通孔型FBAR如图2(a)所示。为了加工方便,构成滤波器芯片的8个FBAR单元置于同一个支撑膜片上,采用深反应离子刻蚀(DRIE)微加工背腔形成支撑膜片。支撑膜片是支撑层和温度补偿层的复合,以抑制FBAR 的频率温度系数(TCF)。为了与射频探针台配备的G-S-G 探针兼容,BAW 滤波器的焊盘设计成边长为60μm 的正方形,焊盘间距为100μm;由图2(b)可知,外侧为接地焊盘(G),中间为信号焊盘(S);接地线环绕构成滤波器的8个FBAR单元以屏蔽电磁干扰。由于BAW 滤波器为二端口器件,将两组G-S-G焊盘分别设置在滤波器的两侧,且两侧的S焊盘分别与相应FBAR单元的底电极相连。表1为BAW 滤波器中各FBAR单元的结构参数。

关于体声滤波器的片上测试与性能表征结果测试详细剖析

图2 BAW 滤波器的结构

关于体声滤波器的片上测试与性能表征结果测试详细剖析

表1 构成BAW 滤波器的8个FBAR的结构参数

2 测试

采用射频探针台(APOLLOWAVE a-200cs)和矢量网络分析仪(R&S ZVA67或LA 19-13-03)测量BAW 滤波器芯片的S 参数。BAW 滤波器中心频率的设计值约为1.5GHz,由于是对第一轮流片的滤波器芯片进行测试,VNA 扫频范围为0.5~2.5GHz,扫频步长为1MHz。图3为测试系统的照片及原理框图。

关于体声滤波器的片上测试与性能表征结果测试详细剖析

图3 测试系统

测量前需要首先校准测试系统,以消除系统误差。具体方法是在探针台所附显微镜的协助下,利用负载标准衬底,按照开路-短路-负载的校准步骤校准。负载标准衬底上有3 种标准负载(见图4(a)~(c)),分别表示“开路”、“短路”和“50Ω”。本文采用2-Port LRRM (线-反射-反射-匹配)的校准模式,该模式具有自动补偿功能,可消除探头位置变化引起的多种误差,适用于圆片级测试。

关于体声滤波器的片上测试与性能表征结果测试详细剖析

图4 用于射频探针测试校准的负载标准衬底

接着进行BAW 滤波器芯片的片上射频探针测试。将滤波器圆片真空吸附在探针台的承片台上。

在探针台显微镜的辅助下,将G-S-G探针对应压紧滤波器芯片的G-S-G焊盘,探针另一端通过射频电缆连接到VNA。图5为射频探针测试时由探针台显微镜获取的多幅BAW 滤波器芯片照片;由图可知,G-S-G探针已压在芯片的G-S-G 焊盘上,构成每个滤波器芯片的8个FBAR均位于衬底背面掏空的膜片(较黑的矩形区域)上。射频探针台配置的WinCal软件将射频探针测试结果记录在后缀名为wrp的数据文件中,包括了S11、S12、S21和S22的测试数据。通过WinCal软件可将wrp文件转换为便于ADS软件处理的后缀名为S2P的文件。

关于体声滤波器的片上测试与性能表征结果测试详细剖析

图5 射频探针台显微镜拍摄的BAW 滤波器芯片的显微照片

3 表征

为了从测得的S 参数便捷地计算出BAW 滤波器的各项性能参数,在ADS软件环境下建立了BAW 滤波器性能参数的计算方法和流程。首先在ADS软件中导入射频探针测试获得的S2P文件。具体方法是在ADS软件中新建一张原理图,然后放置S2P元件和相应的S 参数端子,构成的射频电路如图6所示;以图5中的2# 待测器件(DUT),在S2P元件中导入测得的2# DUT的S2P文件;由于测试时已观测到BAW 滤波器中心频率的实测值与设计值吻合较好,为便于观察S 参数曲线,将扫频范围缩小为1.2~1.8GHz,步长仍为1MHz。

关于体声滤波器的片上测试与性能表征结果测试详细剖析

图6 在ADS软件中导入S2P文件的方法

在ADS软件绘图框中的“Trace Expression”中输入“dB(S(2,1))”,就能得到2# DUT的传输特性第5期高杨等:体声波滤波器的片上测试与性能表征(S21)曲线,如图7(a)所示。通常对于窄带滤波器,f0为插入损耗最小点所对应的频率,取该曲线上绝对值最小点所对应的频率即为f0;插入损耗最小点左右各下降3dB高度所对应的频率之差即为3dB带宽。由于射频探针测量S 参数时的扫频步长设置为1MHz,3dB带宽的计算误差在0~2MHz之间。根据设计,取S21曲线中f0-25MHz和f0+25MHz两个频点处的dB值表征带外抑制;带内波动是通带内dB值的极差;f0处的插入损耗作为滤波器的带内插损。

滤波器的电压驻波比(VSWR)定义为[7]

因此,在绘图框中的“Trace Expression”中输入“(1+mag(S(1,1)))/(1-mag(S(1,1)))”,得到2# DUT的的VSWR 曲线,中心频率f0处的取值即为滤波器的VSWR 值,如图7(b)所示。

关于体声滤波器的片上测试与性能表征结果测试详细剖析

图7 一只BAW 滤波器的S21

曲线和VSWR 曲线

4 结果与讨论

表2为图5所示多个BAW 滤波器芯片样品的射频探针测试与性能表征结果。

关于体声滤波器的片上测试与性能表征结果测试详细剖析

表2 制备的BAW 滤波器芯片的性能参数

图8对比了2# DUT实测与仿真的S21曲线。仿真曲线是通过建立BAW 滤波器中FBAR单元的Mason模型计算得到的[8]。由图可知,实测的中心频率比仿真值小了约40MHz,主要原因是实际制备的BAW 滤波器中的FBAR的膜层厚度较设计值偏厚[9]。实测的带内波动大于仿真值,主要原因是由于FBAR 的薄膜沉积厚度误差,导致了串联FBAR的串联谐振频率与并联FBAR的并联谐振频率不再相等。实测的带内插损远大于仿真值,极有可能是因为本文中的BAW 滤波器是在低阻硅衬底上制备的(工艺失误),低阻硅衬底会造成射频信号的严重泄露。

关于体声滤波器的片上测试与性能表征结果测试详细剖析

图8 BAW 滤波器实测与仿真S21曲线的对比

5 结束语

采用射频探针台和VNA 测量了所制备的BAW 滤波器芯片样品的S 参数。由于BAW 滤波器3dB带宽的测量精度主要取决于VNA 扫频的步长,对于截止曲线极其陡峭的窄带带通BAW 滤波器,VNA的扫频步长设置不宜太大,才更精确地测得滤波器的带宽。可以采用两步扫频的测试方法,先大步长扫频找到中心频率的大致位置,再在覆盖中心频率较窄的频带内小步长扫频测量S 参数。

为了从测得的S 参数便捷地计算出表征BAW滤波器性能的各项指标,在ADS软件环境下建立了BAW 滤波器性能参数的解算流程。获得了这批BAW 滤波器样品的片上测试性能表征结果。与设计仿真结果(视为标准值)对比发现:低阻硅衬底会使BAW 滤波器的带内插损显著增加;BAW 滤波器中各薄膜体声波谐振器(FBAR)单元的薄膜沉积厚度误差会使BAW 滤波器的带内波动偏大,且FBAR薄膜厚度较设计值增大时BAW 滤波器的中心频率会向下偏移。后续流片中,应在高阻硅上制备BAW 滤波器并严格控制FBAR膜层的厚度。



关于我们产品信息应用解决方案技术支持与售后服务重点客户联系我们

 英国牛顿科技N4L -  日本岩通计测IWATSU - 英国LA - 德国PMK - 日本APOLLOWAVE - 德国 DR HUBERT  中国总代理商  

页面版权所有 长沙力高捷创仪器有限公司 《中华人民共和国电信与信息服务业务经营许可证》 编号:湘ICP备19020595号  

地址:湖南省 长沙市雨花区韶山南路亚商国际大厦A座2524室   联系电话: 0731-85260926  传真:0731-85263946

CASCADE射频微波探针|APOLLOWAVE半自动功率探针台探针卡|VITREK 安规/高压表|PEM CWT探头|PSM1700频率响应|PEARSON电流探头|IWATSU 曲线图示仪|PMK高压探头




收缩